Answer:
Isothermal  expansion Wâ =-37198.9 J
Polytropic Compression Wâ =-34872.82 J
Isobaric Compression Wâ = Â -6974.566 J
The net work for the cycle = -79046.29 J
Explanation:
Mass of air = 0.15 kg = 150 g
Molar mass = 28.9647 g/mol
Number of moles = 150 g /28.9647 g/mol = 5.179 moles of air
PV = nRT therefrore V = nRT/(P) = 5.179*8.314*(350+273.15)/(2Ă10â¶) = 0.0134167 mÂł
For isothermal expansion we have
PâVâ = PâVâ or Vâ = PâVâ/Pâ = 2Ă10â¶*0.0134167 / (5Ă10â”) = 0.0536668 mÂł
Therefore work done
Wâ = -nRTln(Vâ/Vâ) = -26833ln(4) = -37198.9 J
Stage 2
Compression polytropically we have
[tex]\frac{P_2}{P_3} = (\frac{V_3}{V_2} )^n[/tex] Â where Pâ = 2 MPa
Therefore Vâ = [tex](\frac{1}{4} )^{\frac{1}{1.2} }*V_2[/tex]  = 1.6904Ă10â»ÂČ mÂł
Work = Wâ = [tex]\frac{P_2V_2-P_3V_3}{n-1}[/tex] = Â -34872.82 J
[tex]\frac{P_2}{P_3} = (\frac{T_2}{T_3} )^\frac{n}{n-1}[/tex] Â Â or Tâ = [tex]T_2*(\frac{P_3}{P_2})^\frac{n-1}{n}[/tex] = 785.12 K
Isobaric compression we have  thus
Work done Wâ = P(Vâ -Vâ) = -6974.566 J
Total work = Wâ + Wâ + Wâ = -37198.9 J + -34872.82 J + -6974.566 J = -79046.29 J