Respuesta :
Answer:
x (max) = 26760 m
y (max) Â = 3859 Â meters
V = 549.5 Â m/sec
Step-by-step explanation:
Equations to describe the projectile shot movement are:
a(x)  =  0   V(x)  =  V(₀) *cos α          x  =  V(₀) *cos α  * t
a(y)  = -g   V(y)  =  V(₀) * sin α  - g*t     y  =  V(₀) * sin α *t  - (1/2)*g*t²
a ) What is the range of the projectile.  α  =  30°
then  sin 30° = 1/2   cos  30° = √3 /2  and   tan 30° = 1/√3
x  maximum occurs when in the equation of trajectory  we make  y  = 0
Then
y  =  x*tan α  -  g*x / 2*V(₀)²*cos²  α
x*tan α  =  g*x /  2* V(₀)²*cos²  α
By subtitution
1/√3   =  9.8* x(max)  / 2* (550)²*0.75
(1/√3) * 453750 / 9.8  = x (max)
x (max) = 453750 / 16.95 Â meters
x (max) = 26760 m
The maximum height is when V(y) = 0
We compute t in that condition
V(y)  =  0  =  V(₀) * sin α - g*t
t  =  V(₀) * sin α / g    ⇒  t  =  550* (1/2) / 9.8
t  =  28.06 sec
Then  h (max)  =  y(max)  =  V(₀) sin α * t  - 1/2 g* t²
y (max)  =  550* (1/2)*28.06 - (1/2)* 9.8 * (28.06)²
y (max) Â = Â 7717 Â - Â 3858 Â
y (max) Â = 3859 Â meters
What is the speed when the projectile hits the ground
V  =  V(x)  + V (y)   and  t  =  2* 28.06     t  =  56.12 sec
mod V  =√ V(x)²  + V(y)²
V(x)  =  V(₀) cos α   =  550 * √3/2
V(x)  = 475.5  m/sec    V(x)²  =  226338 m²/sec²
V(y) =  550*1/2  -  9.8* 56.12   ⇒  V(y) = 275  -  549.98
V(y) =  - 274.98      V(y) ²  = Â
V =  √ 226338 + 75614   ⇒  V = 549.5  m/sec