Answer:
p + 0.0001q = 5
Step-by-step explanation:
Data provided in the question:
When Price, pā = $4.77 ; Demand, qā = 2,300
and,
When Price, pā = 3,300 ; Demand, qā = 3,300
considering the above as the points on the line,
now, the general equation for a line is given as:
[tex]\frac{q_1-q}{p_1-p}=\frac{q_2-q_1}{p_2-p_1}[/tex]
on substituting the respective values, we get
[tex]\frac{2,300-q}{4.77-p}=\frac{3,300-2,300}{4.67-4.77}[/tex]
or
[tex]\frac{2,300-q}{4.77-p}=\frac{1000}{-0.1}[/tex]
or
2,300 - q = -10,000(4.77 - p)
or
ā 2,300 - q = -47700 + 10,000p
or
ā 10,000p + q = 2300 + 47700
or
ā 10,000p + q = 50000
or
ā p + 0.0001q = 5